skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gardner, Lauren"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Geard, Nicholas (Ed.)
    Human behavior plays a crucial role in infectious disease transmission, yet traditional models often overlook or oversimplify this factor, limiting predictions of disease spread and the associated socioeconomic impacts. Here we introduce a feedback-informed epidemiological model that integrates human behavior with disease dynamics in a credible, tractable, and extendable manner. From economics, we incorporate a dynamic decision-making model where individuals assess the trade-off between disease risks and economic consequences, and then link this to a risk-stratified compartmental model of disease spread taken from epidemiology. In the unified framework, heterogeneous individuals make choices based on current and future payoffs, influencing their risk of infection and shaping population-level disease dynamics. As an example, we model disease-decision feedback during the early months of the COVID-19 pandemic, when the decision to participate in paid, in-person work was a major determinant of disease risk. Comparing the impacts of stylized policy options representing mandatory, incentivized/compensated, and voluntary work abstention, we find that accounting for disease-behavior feedback has a significant impact on the relative health and economic impacts of policies. Including two crucial dimensions of heterogeneity—health and economic vulnerability—the results highlight how inequities between risk groups can be exacerbated or alleviated by disease control measures. Importantly, we show that a policy of more stringent workplace testing can potentially slow virus spread and, surprisingly, increase labor supply since individuals otherwise inclined to remain at home to avoid infection perceive a safer workplace. In short, our framework permits the exploration of avenues whereby health and wealth need not always be at odds. This flexible and extendable modeling framework offers a powerful tool for understanding the interplay between human behavior and disease spread. 
    more » « less
    Free, publicly-accessible full text available October 3, 2026
  2. Free, publicly-accessible full text available June 1, 2026
  3. Larremore, Daniel B (Ed.)
    During the COVID-19 pandemic, forecasting COVID-19 trends to support planning and response was a priority for scientists and decision makers alike. In the United States, COVID-19 forecasting was coordinated by a large group of universities, companies, and government entities led by the Centers for Disease Control and Prevention and the US COVID-19 Forecast Hub (https://covid19forecasthub.org). We evaluated approximately 9.7 million forecasts of weekly state-level COVID-19 cases for predictions 1–4 weeks into the future submitted by 24 teams from August 2020 to December 2021. We assessed coverage of central prediction intervals and weighted interval scores (WIS), adjusting for missing forecasts relative to a baseline forecast, and used a Gaussian generalized estimating equation (GEE) model to evaluate differences in skill across epidemic phases that were defined by the effective reproduction number. Overall, we found high variation in skill across individual models, with ensemble-based forecasts outperforming other approaches. Forecast skill relative to the baseline was generally higher for larger jurisdictions (e.g., states compared to counties). Over time, forecasts generally performed worst in periods of rapid changes in reported cases (either in increasing or decreasing epidemic phases) with 95% prediction interval coverage dropping below 50% during the growth phases of the winter 2020, Delta, and Omicron waves. Ideally, case forecasts could serve as a leading indicator of changes in transmission dynamics. However, while most COVID-19 case forecasts outperformed a naïve baseline model, even the most accurate case forecasts were unreliable in key phases. Further research could improve forecasts of leading indicators, like COVID-19 cases, by leveraging additional real-time data, addressing performance across phases, improving the characterization of forecast confidence, and ensuring that forecasts were coherent across spatial scales. In the meantime, it is critical for forecast users to appreciate current limitations and use a broad set of indicators to inform pandemic-related decision making. 
    more » « less